
TREK-USER-0004

 1

TREK

CCSDS FILE DELIVERY PROTOCOL

(CFDP) CONSOLE

USER GUIDE

January 2020

Approved for Public Release; Distribution is Unlimited.

TREK-USER-0004

 i

TABLE OF CONTENTS

PARAGRAPH PAGE

1 Welcome ..1

1.1 Getting Started ... 1

2 Technical Support ...1

3 Introduction ..1

4 Overview of the User Interface..8

4.1 Console Menu .. 8

5 Quick Start Guides ..16

5.1 How to Configure the Application.. 16
5.2 How to Create a CFDP Dropbox .. 28
5.3 How to Create an Encrypt or Decrypt Dropbox .. 30
5.4 How to Create a Frag or Defrag Dropbox.. 31
5.5 How to Turn on Message Logging ... 33
5.6 How to Turn on Statistics Logging... 34
5.7 How to Turn on Metrics Logging ... 37

6 Details ..38

6.1 Configuration ... 38
6.2 Transaction ... 39
6.3 Messages and Message Logging... 39

7 FAQ and Troubleshooting...39

7.1 Is There an Easy Way to Transfer the Contents of a Directory? .. 40
7.2 What is class1 and class2? .. 40
7.3 What is “////”?... 40
7.4 Source and Destination Constraints.. 40
7.5 My File Starts to Transfer and Then Stops .. 41
7.6 Transfer Results When Item Exists at Destination .. 41
7.7 Important Things to Know When Using the Get Primitive .. 41
7.8 How Does Suspend Transactions Work? ... 42
7.9 CFDP Transactions in an AOS/LOS Environment ... 42
7.10 How Do I Include My Crypt User Passphrase in the CFDP Console App? 43

TREK-USER-0004

 ii

TABLES

TABLES PAGE

Table 1 ION CFDP Transmission Parameters ... 4
Table 2 CFDP Directives... 5
Table 3 CFDP Directive Format ... 5
Table 4 TReK CFDP Configuration File Parameters .. 28
Table 5 Device Statistics ... 36
Table 6 Packet Statistics .. 37
Table 7 CFDP Metrics ... 38

TREK-USER-0004

 1

1 Welcome

The Telescience Resource Kit (TReK) is a suite of software applications and libraries that
can be used to monitor and control assets in space or on the ground.

The TReK CFDP console application provides the capability to transfer files using the
Consultative Committee for Space Data Systems (CCSDS) File Delivery Protocol
(CFDP).

1.1 Getting Started

Start with the Introduction which provides an application overview. Next, try the Quick
Start Guides for “How Tos” for common functions. For help with details, reference the
Details section. See the FAQ and Troubleshooting section for helpful hints and solutions
to the common “gotchas”.

2 Technical Support

If you are having trouble installing the TReK software or using any of the TReK
software, please contact us for technical assistance:

TReK Help Desk E-Mail, Phone & Fax:

E-Mail: trek.help@nasa.gov
Telephone: 256-544-3521 (8:00 a.m. - 4:00 p.m. Central Time)

Fax: 256-544-9353

If you call the TReK Help Desk and you get a recording please leave a message and
someone will return your call. E-mail is the preferred contact method for help. The e-

mail message is automatically forwarded to the TReK developers and helps cut the
response time. The HOSC Help Desk (256-544-5066) can provide assistance as needed
and is available 24x7.

3 Introduction

The TReK CFDP console application provides the capability to transfer files using the
Consultative Committee for Space Data Systems (CCSDS) File Delivery Protocol
(CFDP). The application uses the TReK CFDP library to provide CFDP functionality

through a menu of console application command line primitives.

The CCSDS File Delivery Protocol (CFDP) was developed by the Consultative
Committee for Space Data Systems (CCSDS). Official specifications are contained in a

CCSDS document called the CFDP Blue Book (available at www.ccsds.org). The CFDP
protocol provides reliable transfer of files from one computer (entity) to another, and has

http://www.ccsds.org/

TREK-USER-0004

 2

been designed to work well over space links. It can be used to perform space to ground,
ground to space, and ground to ground file transfers.

CFDP requires a sender and a receiver. The sender and receiver must be configured and
running at the same time to perform a file transfer. Each party is referred to as an
“Entity”. The sender is an entity and the receiver is an entity. Each “Entity” must have a
unique Entity ID. For example:

Figure 1 CFDP Sender and Receiver

To move a file from one computer to another, you will enter one or more CFDP
Commands (primitives) to indicate the action to be taken. The syntax of a primitive is as
follows:

[CFDP Directive] [Transmission] [source-path] [remote-EID] [destination-path]

The TReK CFDP console application provides support for CFDP over User Datagram

Protocol (UDP) and CFDP over Bundle Protocol (BP) using the Jet Propulsion Lab (JPL)
Interplanetary Overlay Network (ION) Disruption Tolerant Networking (DTN) software.
The CFDP over UDP configuration option is referred to as Native CFDP. The CFDP
over BP configuration option is referred to as ION CFDP. In the Native CFDP

configuration, the application uses UDP sockets and a Goddard Space Flight Center
(GSFC) CFDP library that performs the CFDP work. In the ION CDFP configuration,
the TReK CFDP console application communicates with the ION software which
performs the CFDP work.

There are differences in capabilities and syntax between the CFDP Native mode and the
ION CFDP mode. These differences are summarized below.

Native CFDP Configuration
The syntax of a primitive is as follows:

[CFDP Directive] [Transmission] [source-path] [remote-EID] [destination-path]

Native CFDP Example: put class2 “D:\file1.txt” 2 “/home/kirk/file1.txt”

The TReK CFDP application currently supports multiple CFDP Directives for both

Native and ION CFDP modes. These are defined in the Table 2 CFDP Directives.

Valid Transmission values are class1 or class2. Class1 does not guarantee reliable
delivery of the file to the destination. Class2 does ensure reliable delivery.

TREK-USER-0004

 3

The file you want to transfer is considered the “Source” and the location it should be
transferred to is considered the “Destination”.

When entering a Source or Destination in a CFDP command line, it must be encapsulated
in double quotes.

ION CFDP Configuration
The syntax of a primitive is as follows:

[CFDP Directive] [Transmission] [source-path] [remote-EID] [destination-path]

ION CFDP Example: put //// “D:\file1.txt” 2 “/home/kirk/file1.txt”

The TReK CFDP application currently supports multiple CFDP Directives for both

Native and ION CFDP modes. These are defined in the Table 2 CFDP Directives.

The Transmission entry for ION CFDP is composed of five properties. Once these
properties are configured, a “////” string is used to indicate that the pre-configured values

should be used. The “////” nomenclature is shorthand notation for the following
combination of values:

Lifespan/Bundle Protocol Class of Service/Expedited Priority Ordinal/Transmission Mode/Criticality

When the values are empty it indicates that pre-configured values should be used for
these properties.

A summary of the Transmission properties is provided in the following table. For details,
please reference section 5.1 Table 4.

Property Description

Lifespan The lifespan is the bundle's "time to live" (TTL) in
seconds. The bundle is destroyed if its TTL has

expired and it has not reached its destination.
Bundle Protocol Class of Service The Bundle Protocol Class of Service defines the

transmission priority of outbound bundles from three
ION priority queues corresponding to bulk, standard,
and expedited priorities. The expedited priority
queue must be empty before bundles in the standard

or bulk queues are serviced by ION. Therefore,
bundles with expedited priority should only be sent in
critical/emergency situations.

Expedited Priority Ordinal The expedited priority ordinal is only associated with
the expedited priority class of service.

Transmission Mode The transmission mode defines the reliability of
bundle delivery to a destination. The three

TREK-USER-0004

 4

transmission modes supported are best effort, assured,
and assured with custody transfer.

Criticality A critical bundle is one that has to reach its
destination as soon as is physically possible. For this
reason, bundles flagged as critical may not include
custody transfer and require an ION configuration

with contact graph routing. In some cases, a critical
bundle may be sent over multiple routes to ensure
delivery to its final destination. Critical bundles are
placed in the expedited priority queue and should

only be used in emergency situations.

Table 1 ION CFDP Transmission Parameters

CFDP Directives
The TReK CFDP console application currently supports multiple CFDP directives for

both Native and ION CFDP mode and includes put and get directives, filestore directives
and message directives. These directives are defined in the following table:

Directive Description

append_file append a file at the remote entity to another file at the remote
entity.

bit_rate changes the aggregate file transfer bit rate, in real time, for local or
remote entities hosting a TReK implementation of Native CFDP.

The “affected EID” may be the local entity ID or a remote entity
ID. The "bit_rate" primitive is delivered to a remote entity in the
form of a TReK CFDP message.

close_rec_file send a directive to a TReK Record library to close one or all open
record files. If the record file name is not included in the
primitive, all open record files associated with the TReK Record

library are closed. The TReK Record library automatically opens
a new record file after it closes a current record file. The “affected
EID” may be the local entity ID or a remote entity ID. The
"close_rec_file" directive is delivered to a remote entity in the

form of a TReK CFDP message.

create_dir create a directory at the remote entity.
create_file create an empty file at the remote entity.

delete_file delete a file at the remote entity.

deny_dir delete a directory at the remote entity. (Like remove_dir, but does
not fail if the directory does not exist. Directory must be empty.)

deny_file delete a file at the remote entity. (Like delete_file, but does not

fail if the file does not exist)
get copy file(s) from the remote entity to the local entity. (File cannot

be empty.)

message send a text string to the remote entity.
put copy file(s) from the local entity to the remote entity. (File cannot

TREK-USER-0004

 5

be empty.)
remove_dir delete a directory at the remote entity. (Directory must be empty.)

rename_file rename a file at the remote entity.

replace_file replace a file (contents) at the remote entity with another file
(contents) at the remote entity.

Table 2 CFDP Directives

Some directives only require a Source. The following table describes what is required for
Source and Destination for each directive. Name of file, filename, and name of directory
refer to an absolute path.

Directive Source (first file) Destination (second file)

append_file name of file whose contents
form first part of new file and

name of the new file

name of file whose contents will form
second part of new file

bit_rate aggregate file transfer bit rate

close_rec_file name of the TReK record

library device

name of the TReK record file to close

(if not included all record files
associated with the record device are
closed)

create_dir name of directory to be created

create_file filename to be created

delete_file filename to be deleted

deny_dir name of directory to be deleted
deny_file filename to be deleted

get file or directory name of file(s)

to retrieve

file or directory name for file(s)

retrieved
message message

put file or directory name of file(s)

to send

file or directory name for file(s) sent

remove_dir name of directory to be deleted

rename_file old filename new filename

replace_file filename whose contents are to
be replaced

filename whose contents will replace
the contents of the first filename

Table 3 CFDP Directive Format

When entering a Source or Destination in a CFDP command line, it must be encapsulated
in double quotes.

Note: The Get directive is not supported in all ISS CFDP Native and ION

implementations. Filestore and message directives are not supported in all ISS CFDP
Native implementations. They are supported by TReK when both the sender and receiver
are TReK CFDP implementations (TReK CFDP application, TReK CFDP console
application, or TReK CFDP Library). In addition, the bit rate and close rec file

directives are not part of the CFDP Blue Book. The bit rate directive is only supported

TREK-USER-0004

 6

by the TReK CFDP implementation of Native CFDP. The close rec file directive is only
supported the by the TReK CFDP implementation of Native and ION CFDP in
conjunction with the TReK Record library.

TReK CFDP may be configured to encrypt and decrypt all Native CFDP transactions
(e.g., "put", "get", "message", "create_file", "delete_file" ...). The Native CFDP
encryption and decryption capability is implemented by encrypting and decrypting the

CFDP Protocol Data Units (PDUs) that are exchanged between the CFDP source and
destination platforms. Review the “remote entity ID” discussion in the CFDP
configuration file description for further information on this Native CFDP
encrypt/decrypt configuration option. This option is not available for ION CFDP because

TReK CFDP does not have access to ION’s CFDP PDUs.

TReK provides the ability to create CFDP dropboxes to push files to a remote
destination. The dropboxes support both Native and ION CFDP modes. CFDP

dropboxes are created when the TReK application’s TReK CFDP library reads and
processes the TReK CFDP configuration file. A TReK CFDP configuration file CFDP
"dropbox" primitive defines a dropbox's operation parameters including where the
dropbox is located and the destination of each file placed in the dropbox. A dropbox file

is transferred to the dropbox destination immediately after the file is copied to the
dropbox assuming a communication path exists between both sides of the transaction.
Pre-existing dropbox files are immediately transferred after the creation of the dropbox.

TReK also provides the ability to create encryption and decryption dropboxes to encrypt
and decrypt local files. The encrypt and decrypt dropboxes support both Native and ION
CFDP modes. Encrypt and decrypt dropboxes are created when the TReK application’s
TReK CFDP library reads and processes the TReK CFDP configuration file. A TReK

CFDP configuration file encrypt/decrypt "dropbox" primitive defines a dropbox's
operation parameters including where the dropbox is located and the directory location of
the newly created encrypted or decrypted file. By chaining together encrypt and decrypt
dropboxes with a CFDP dropbox, a completely automated encrypt, CFDP file transfer,

decrypt chain may be created. This is the only method TReK provides to automate file
encryption/decryption using ION CFDP.

TReK includes a CFDP Graphical User Interface (GUI) application and a CFDP library.

If you need command line CFDP functionality onboard a spacecraft consider using the
TReK CFDP console application. Source code for the console application is provided in
the TReK example directory. If you need CFDP functionality without a command line
interface, the CFDP destination application may meet your requirements. The source

code for the CFDP destination application is also found in the TReK example directory.
If you need CFDP functionality on the ground consider using the TReK CFDP GUI
application. If you need to include CFDP functionality in your own application, consider
using the TReK CFDP library.

TREK-USER-0004

 7

TReK Encryption
The TReK encryption library uses OpenSSL's FIPS 140-2 validated cryptographic
module and public/private key pairs to encrypt and decrypt files and packets. TReK

encryption library support is provided on 32 bit and 64 bit Linux operating systems and
64 bit Windows operating systems. TReK encryption library support is not available on
32 bit Window operating systems. Both the flight platform and ground platform generate
public/private key pairs using TReK's "trek_crypt" application. TReK's public

key/private key encryption architecture is based on Elliptic Curve Cryptography (ECC)
using curve P-256 providing 128-bit security with 128 or 256 bit keys. The cipher
packages included with the TReK encryption library are the Advance Encryption
Standard (AES) Galois/Counter Mode(AES GCM) and the AES Counter with CBC-

MAC (AES CCM) ciphers offering confidentiality, authenticity and integrity. The
library supports 128 and 256 bit cipher key sizes and provides AES 128 and 256 bit key-
wrap/unwrap functions. Fresh Cipher Encryption Keys (CEK) are created for files and
packets using a Password-Based Key Derivation Function 2 (PBKDF2).

TReK's "trek_crypt" application generates the public and private key pair using ECC.
The private key is wrapped prior to storing in a file with a default passphrase or an
optional user passphrase up to 63 characters in length. If a user passphrase is used to

wrap the private key, the passphrase must be provided during runtime. Three methods
are available to provide the user passphrase at runtime: enter the passphrase using the
TReK CFDP GUI, include the passphrase as a seperate parameter after the path and
filename of the CFDP configuration file when launching the TReK CFDP console

application or provide the passphrase programmatically using the TReK API. The latter
method requires recompilation of the TReK CFDP console application or user
application. A shared secred key is generated using the private key and the
remote/destination platform's public key referred to as the peer public key. The peer

public key (i.e., the public key of the destination platform) must be exchanged manually
prior to encryption or decryption, no automated key exchange mechanisms is
implemented. The TReK encryption library generates a new CEK for every encrypted
file and may be configured to generate a new CEK for every encrypted packet in a packet

stream. The TReK encryption library may also be configured to generate a new CEK, for
a packet stream, once every "x" seconds to support encryption of high rate packet stream.
No "encryption handshaking" is required between flight and ground hardware during the
encryption and decryption of packets.

Files may be encrypted and decrypted using TReK encryption or decryption dropboxes.
Native CFDP may be configured to encrypt and decrypt the CFDP packet streams
associated with CFDP transactions. The native CFDP stream encryption configuration

automatically encrypts and decrypts files as they are being transferred between the source
platform and destination platform requiring no encryption or decryption dropbox. The
CFDP packet stream encryption option is not available for ION CFDP. ION CFDP must
use the encryption and decryption dropboxes to encrypt and decrypt files. Review the

description of the CFDP configuration file's remote entity IDs for further information on
packet stream encryption and native CFDP.

TREK-USER-0004

 8

4 Overview of the User Interface

4.1 Console Menu

The CFDP console application command primitives are described below.

 To put a file on another platform:

Native CFDP Configuration

put <class1,class2> <”source pathname”> <destination entity id> <”destination pathname”>

(e.g., put class2 “/home/user/fileA.txt” 2 “/home/user/fileB.txt”)

ION CFDP Configuration

put <life>/<cos>/<ord>/<mode>/<crit> <"src path"> <dest EID> <"dest path">
(e.g., put 86400/STD_PRIORITY/0/ASSURED/NOT_CRITICAL "D:/test a" 100 "D:/test

b")

Executes a single “put” transaction by transferring a copy of a file from the local

platform to the destination platform.

 To put a directory of files on another platform:

Native CFDP Configuration

put <class1,class2> <”source pathname”> <destination entity id> <”destination pathname”>

 (e.g., put class2 “/home/user/” 2 “D:/”)

ION CFDP Configuration

put <life>/<cos>/<ord>/<mode>/<crit> <"src path"> <dest EID> <"dest path">
 (e.g., put 86400/STD_PRIORITY/// "/home/user/" 100 "D:/")

 Executes a “put” transaction for all the files in the specified directory by transferring
 copies of the files from the local platform to the destination platform.

 To get a file from another platform:

Native CFDP Configuration

get <class1,class2> <”source pathname”> <source entity id> <”destination pathname”>

(e.g., get class2 “/home/user/fileB.txt” 2 “D:/fileA.txt”)

ION CFDP Configuration

get <life>/<cos>/<ord>/<mode>/<crit> <"src path"> <src EID> <"dest path">
(e.g., get ///ASSURED / "D:/test a" 100 "D:/test b")

Executes a single “get” transaction by transferring a copy of a file from the remote
platform to the local platform.

 To get a directory of files from another platform:

Native CFDP Configuration

TREK-USER-0004

 9

get <class1,class2> <”source pathname” > < source entity id> <”destination pathname “>

(e.g., get class2 “D:/” 2 “/home/user/”)

ION CFDP Configuration

get <life>/<cos>/<ord>/<mode>/<crit> <"src path"> <src EID> <"dest path">
(e.g., get //// "/home/user/" 100 "D:/")

 Executes a “get” transaction for all the files in the specified directory by transferring
 copies of the files from the remote platform to the local platform.

 To execute a filestore directive:

Native CFDP Configuration

<action> <class1,class2> <”1st path” > < dest EID >

(e.g., create_file class2 “D:/test a” 2)

Or

<action> <class1,class2> <”1st path” > < dest EID ><"2nd path">
 (e.g., rename_file class2 "D:/test a" 2 "D:/test b")

ION CFDP Configuration

<action> <life>/<cos>/<ord>/<mode>/<crit> <"1st path"> <dest EID>
(e.g., create_file //// "D:/test a" 100)

Or

<action> <life>/<cos>/<ord>/<mode>/<crit> <"1st path"> <dest EID> <"2nd path">
(e.g., rename_file / "D:/test a" 100 "D:/test b")

Executes a filestore directive on remote platform. For a complete listing of the
filestore directives see Section 3 Table 2.

 To send a message to a remote platform:

Native CFDP Configuration

message <class1,class2> <”message” > < dest EID >

(e.g., message class2 "Hello world" 2)

ION CFDP Configuration

message <life>/<cos>/<ord>/<mode>/<crit> <"message"> <dest EID>

(e.g., message / "Hello world" 100)

Sends a message to a remote platform.

TREK-USER-0004

 10

 To change the aggregate file transfer bit rate:

Native CFDP Configuration

bit_rate <class1,class2> <aggregate file transfer bit rate > < affected EID >

(e.g., bit_rate class2 5000000 2)

Changes the aggregate file transfer bit rate, in real time, for local or remote entities
hosting a TReK implementation of Native CFDP. The “affected EID” may be the
local entity ID or a remote entity ID. The "bit_rate" directive is delivered to a remote
entity in the form of a TReK CFDP message.

 To close a TReK record file:

Native CFDP Configuration

close_rec_file <class1,class2> <”rec lib dev name” > < affected EID >

(e.g., close_rec_file class2 “record_device1” 2)

Or

close_rec_file <class1,class2> <”rec lib dev name” > < affected EID > <”rec file name”>

(e.g., close_rec_file class2 “record_device1” 2 “ record_file1”)

ION CFDP Configuration

close_rec_file <life>/<cos>/<ord>/<mode>/<crit> <”rec lib dev name” > < EID >

(e.g., close_rec_file //// “record_device1” 2)

Or

close_rec_file <life>/<cos>/<ord>/<mode>/<crit> <”rec lib dev name” > < EID >

<”rec file name”>

(e.g., close_rec_file / “record_device1” 2 “ record_file1”)

Send a directive to a TReK Record library to close one or all open record files.
If the record file name is not included in the primitive, all open record files
associated with the TReK Record library are closed. The TReK Record library

automatically opens a new record file after it closes a current record file. The
“affected EID” may be the local entity ID or a remote entity ID. The
"close_rec_file" directive is delivered to a remote entity in the form of a TReK
CFDP message. The "close_rec_file" directive is not part of the CCSDS CFDP Blue

Book and will only succeed if both sides of the transaction are hosting the TReK
CFDP library.

 To add a put primitive to a list:

Native CFDP Configuration
add put <class1 or 2> <”source pathname”> <destination EID> <”destination pathname”>

(e.g., add put class2” /home/user/fileA.txt” 2 “D:/fileB.txt”)

TREK-USER-0004

 11

ION CFDP Configuration

add put <life>/<cos>/<ord>/<mode>/<crit> <"src path"> <dest EID> <"dest path">
(e.g., add put 86400/STD_PRIORITY/0/ASSURED/NOT_CRITICAL "D:/test a" 100
"D:/test b")

Adds a “put” primitive to a list of “put” primitives. The “put” primitives are not
executed until a “send” command is executed.

 To add a get primitive to a list:

Native CFDP Configuration
add get <class1 or 2> <”source pathname”> < source EID ><”destination pathname”>
(e.g., add get class2 “/home/user/fileA.txt” 2 “/home/user/fileB.txt”)

ION CFDP Configuration

add get <life>/<cos>/<ord>/<mode>/<crit> <"src path"> <src EID> <"dest path">

(e.g., add get //// "D:/test a" 100 "D:/test b")

Adds a “get” primitive to a list of “get” primitives. The “get” primitives are not
executed until a “send” command is executed.

 To add a filestore primitive to a list:

Native CFDP Configuration

add <action> <class1,class2> <”1st path” > < dest EID >

(e.g., add create_file class2 “D:/test a” 2)

ION CFDP Configuration

add <action> <life>/<cos>/<ord>/<mode>/<crit> <"1st path"> <dest EID>
(e.g., add create_file //// "D:/test a" 100)

Adds a “filestore” primitive to a list of “filestore” primitives. The “filestore”

primitives are not executed until a “send” command is executed.

 To add a message primitive to a list:

Native CFDP Configuration

add message <class1,class2> <”message” > < dest EID >

(e.g., add message class2 "Hello world" 2)

ION CFDP Configuration

add message <life>/<cos>/<ord>/<mode>/<crit> <"message"> <dest EID>
(e.g., add message / "Hello world" 100)

Adds a “message” primitive to a list of “message” primitives. The “message”
primitives are not executed until a “send” command is executed.

TREK-USER-0004

 12

 To add a bit rate primitive to a list:

Native CFDP Configuration

add bit_rate <class1,class2> <aggregate file transfer bit rate > < affected EID >

(e.g., add bit_rate class2 5000000 2)

Adds a “bit rate” primitive to a list of “message” primitives. The “message”
primitives are not executed until a “send” command is executed.

 To add a close rec file primitive to a list:

Native CFDP Configuration

add close_rec_file <class1,class2> <”rec lib dev name” > < affected EID >

(e.g., add close_rec_file class2 “record_device1” 2)

ION CFDP Configuration

add close_rec_file <life>/<cos>/<ord>/<mode>/<crit> <”rec lib dev name” > < EID >

(e.g., add close_rec_file //// “record_device1” 2)

Adds a “close rec file” primitive to a list of “filestore” primitives. The “filestore”
primitives are not executed until a “send” command is executed

 To read a file of primitives and add to a list:

process <”primitive pathname”>

(e.g., process “D:/toolkit_cfdp_primitives.txt”)

Reads a file of primitives and adds them to the appropriate CFDP primitive lists. All
valid primitive files must begin with the text string "primitive version X

NATIVE_CFDP" or "primitive_version X ION_CFDP" on a single line (the "X" in
the text is a version number that may be incremented in future releases). Files that do
not contain the primitive version text string are considered invalid and will not be
read. You may not mix Native CFDP primitives and ION CFDP primitives in the

same primitive file.

 To remove all primitives from a list:

remove

Removes all the primitives from the primitive lists.

TREK-USER-0004

 13

 To send/execute all primitives in a list:

send

Executes all the primitives from the primitive lists.

 To record all primitives in a list:

record prim <”pathname”>
(e.g., record prim “D:/cfdp_prim.txt”)

Records the primitives from the primitive lists to a file.

 To suspend all CFDP transactions:

windows os: ctrl-break or ctrl-fn-pause or ctrl-fn-right shift

linux os: ctrl-c

Suspends all the CFDP transactions.

 To resume all CFDP transactions:

resume

Resumes all the CFDP transactions.

 To cancel a CFDP transaction:

cancel <transaction id>

(e.g., cancel 1_1)

Cancels a CFDP transaction by specifying the transaction ID assigned to the
transaction.

 To cancel all CFDP transactions:

cancel all

Cancels all the CFDP transactions.

 To report on a CFDP transaction:

report <transaction id>

(e.g., report 1_1)

Displays a status report on CFDP transaction by specifying the ID assigned to the

transaction.

TREK-USER-0004

 14

 To report on all CFDP transactions:

report all
or

 r

Displays a status report on all the CFDP transactions.

 To display progress messages:

prog

Display progress messages on all the CFDP transactions.

 To stop displaying progress messages:

stop prog

To stop displaying progress messages on all the CFDP transactions.

 To log messages:

log <”pathname”> <log debug messages (true or false)>
(e.g., log “D:/log.txt” false)

Logs CFDP transaction messages to a file. Debug messages may also be included in

the log file for more detailed information about the transaction.

 To stop logging messages:

stop log

Stops logging CFDP transaction messages to file, closes the file and appends a GMT
time stamp to the name of the file.

 To record statistics snapshot:

stat <”pathname”>
(e.g., stat “D:/statistics.csv”)

Records a snapshot of device statistics once a second and includes current statistics
information on all packets that are being received or sent by the device.

 To stop recording statistics snapshot:

stop stat

TREK-USER-0004

 15

Stops recording a snapshot of device statistics to a file, closes the file and appends to
a GMT time stamp the name of the file.

 To reset statistics:

reset stat

Resets the device statistics information for all devices to zero.

 To record CFDP metrics snapshot:

metric <”pathname”>
(e.g., metric “D:/metrics.csv”)

Records a snapshot of CFDP transaction metrics once a second and includes the

completion status and transaction time of each CFDP transaction.

 To stop recording CFDP metrics snapshot:

stop metric

Stops recording a snapshot of CFDP transaction metrics to a file, closes the file and
appends a GMT time stamp to the name of the file.

 To reset CFDP metrics:

reset metric

Resets all CFDP metrics information to zero.

 To reconfigure the CFDP console application:

reconfig <”pathname”>

(e.g., reconfig “D:/cfdp_config.txt”)

Reconfigures the CFDP console application by cancelling all the current CFDP
transactions and configuring the application with the new configuration file.

 To save the CFDP console configuration:

save <”pathname”>

(e.g., save “D:/cfdp_config.txt”)

Saves the CFDP console configuration parameters to a file. This includes all “put”
and “get” primitives in the "put" and "get" lists.

TREK-USER-0004

 16

 To display the CFDP console configuration:

display config

Displays the list of CFDP console configuration parameters.

 To display the CFDP console command primitives:

help

Displays the list of CFDP console command primitives.

 To exit application:

exit or quit or q

Exits the CFDP console application.

5 Quick Start Guides

This section provides “How Tos” for common functions.

5.1 How to Configure the Application

When launching the CFDP console application, include the path and filename of a TReK
CFDP configuration file. If no path and filename are provided in the command line, the

application attempts to open a configuration file with the default path and filename equal
to “./toolkit_cfdp_config.txt”. If the CFDP console application is configured to perform
encryption/decryption and the private key was wrapped/encrypted with a user passphrase,
the user passphrase may be included in the command line after the configuration file path

name by encapsulating the passphrase in double quotes. For example:

 trek_cfdp_console.exe “D:/tookit_cfpd_config.txt” “passphrase”

If the CFDP console application default path and filename of the configuration file is not
appropriate and the console application is not configured to perform
encryption/decryption, simple include the configuration file path and filename, in double
quotes, after the console application executable. For example:

 trek_cfdp_console.exe “D:/my_cfpd_config.txt”

The format of a configuration file is a series of name value pairs that configure the CFDP

console application to meet user requirements. One or more spaces separate individual
parameters on each line in the file. Table 4 identifies and describes the individual
configuration file parameters. The third column identifies the device mode that each
parameter supports (the CFDP console application does not simultaneously support both

Native CFDP and ION CFDP).

TREK-USER-0004

 17

CFDP Configuration File Parameter Description Device Mode

CFDP_configuration_version

The configuration file version number. The

first parameter in the configuration file must
be the version number or TReK CFDP
initialization will fail.

NATIVE_CFDP
ION_CFDP

cfdp_library_device_mode
A unique reference that may be used to
communicate with other TReK library
devices.

NATIVE_CFDP
ION_CFDP

trek_device_mode

The TReK device mode parameter is set to

NATIVE_CFDP if the TReK CFDP library is
communicating with GSFC's CFDP library or
to ION_CFDP if TReK is communicating
with JPL's CFDP library.

NATIVE_CFDP
ION_CFDP

log_messages_in_file

The log messages in file boolean controls
message logging. If true, messages are

recorded in a log file. The default value is
false.

NATIVE_CFDP

ION_CFDP

log_debug_messages

The log debug messages boolean controls
logging debug messages. If true, debug
messages are recorded in a log file. The

default value is false.

NATIVE_CFDP
ION_CFDP

log_file_path

The log file path is the absolute path to the

directory where the log file should be written.
If an empty string is provided, the default path
is the user’s home directory.

NATIVE_CFDP
ION_CFDP

log_file_name
The log file name is the name to use for the
log file. The default value

"toolkit_cfdp_log.txt".

NATIVE_CFDP
ION_CFDP

record_stat_snapshot_in_file

The record stat snapshot in file boolean

controls recording statistics. If "true", a
statistic snapshot is recorded in a file. The
default value is false.

NATIVE_CFDP
ION_CFDP

record_packet_statistics

The record packet statistics boolean controls
recording packet statistics in addition to

device statistics. If "true", packet statistics are
recorded in a file. The default value is false.

NATIVE_CFDP

ION_CFDP

record_stat_file_path

The record stat file path is the absolute path to
the directory where the statistics file should be
recorded. If an empty string is provided, the
default path is the user’s home directory.

NATIVE_CFDP
ION_CFDP

record_stat_file_name

The record stat file name is the name to use

for the statistics file. The default value is
"toolkit_cfdp_statistics.csv".

NATIVE_CFDP
ION_CFDP

record_cfdp_metrics_snapshot_in_file
The record CFDP metrics snapshot in file
boolean controls recording CFDP metrics. If

NATIVE_CFDP
ION_CFDP

TREK-USER-0004

 18

"true", a CFDP metric snapshot is recorded in
a file. The default value is false.

record_cfdp_metrics_file_path

The record CFDP metrics file path is the
absolute path to the directory where the CFDP
metrics file should be recorded. If an empty
string is provided, the default path is the user’s

home directory.

NATIVE_CFDP
ION_CFDP

record_cfdp_metrics_file_name
The record CFDP metrics file name is the
name to use for the CFDP metrics file. The
default value is "toolkit_cfdp_metrics.csv".

NATIVE_CFDP
ION_CFDP

support_cfdp_status_requests

The support cfdp status requests boolean
enables monitoring the status of CFDP
transactions by a user application. If "true",

CFDP transaction monitoring is enabled. The
default value is false.

NATIVE_CFDP
ION_CFDP

public_key_path_and_file_name

The public key path and filename is the
absolute path and file name of the local
entity's public key file. It is used to encrypt

and decrypt files and CFDP PDU packets.
The public key file is created by TReK's
"trek_crypt" program.

NATIVE_CFDP

ION_CFDP

private_key_path_and_file_name

The private key path and filename is the
absolute path and file name of the local
entity's private key file. It is used to encrypt

and decrypt files and CFDP PDUs packets.
The private key file is created by TReK's
"trek_crypt" program.

NATIVE_CFDP

ION_CFDP

packet_encryption_key_time_interval

The packet encryption key time interval
determines how often the packet encryption

key is changed while encrypting a stream of
native CFDP PDU packets. The time interval
is measured in seconds. If the packet
encryption key time interval is set to zero, the

TReK encryption library will generate a new
packet encryption key for every packet in the
stream. The TReK encryption library can
support the encryption of high rate packet

streams by setting the packet encryption key
time interval to a non-zero value. The default
value is 10 seconds.

NATIVE_CFDP

cipher_class

The cipher class is the cipher package that the
TReK encryption library will use to encrypt
and decrypt files and streams of native CFDP

PDU packets. The four cipher class values are
AES_128_GCM, AES_256_GCM,
AES_128_CCM and AES_256_CCM which

NATIVE_CFDP

ION_CFDP

TREK-USER-0004

 19

support either a 128 bit or 256 bit symmetric
key. An AES 256 cipher will require more
CPU resources to encrypt and decrypt files
and streams then an AES 128 cipher.

Primitives

Creates and configures TReK dropboxes using
"dropbox" primitives and/or initializes the list

of CFDP primitives using TReK CFDP
primitives (e.g., "put", "get", "message",
"create_file", "delete_file" ...). An additional
CFDP library function (SendAllRequests)

must be called prior to processing the list of
CFDP primitives. The default primitive list is
empty.

NATIVE_CFDP
ION_CFDP

ack_timeout

The CFDP library sends positive
acknowledgment on reception of the end-of-

file packet and finished packet. This timeout
defines the number of seconds the CFDP
library will wait for the ACK packet to arrive
prior to retransmitting the end-of-file or

finished packet. Minimum value is 1,
maximum value is 2,147,483,647 and the
default value is 15 seconds.

NATIVE_CFDP

ack_limit

The ACK limit is the number of ack timeouts
that may occur prior to cancelling the CFDP
transaction. Minimum value is 1, maximum

value is 2,147,483,647 and the default value is
25.

NATIVE_CFDP

nak_timeout

The CFDP library sends a NAK packet
identifying the CFDP packets that were not
received by the CFDP library. This timeout

defines the number of seconds the CFDP
library will wait for the retransmission of the
requested CFDP packets. Minimum value is 1,
maximum value is 2,147,483,647 and the

default value is 15 seconds.

NATIVE_CFDP

nak_limit

The NAK limit is the number of Nak timeouts

that may occur prior to cancelling the CFDP
transaction. Minimum value is 1,
maximum value is 2147483647 and the
default value is 100.

NATIVE_CFDP

nak_max_pdu_size

The NAK maximum PDU size is the

maximum size of a NAK PDU packet in
bytes. If the CFDP transactions identifies
multiple gaps in the data transmission and the
gap information cannot fit in a single NAK

PDU, the CFDP library will generate multiple

NATIVE_CFDP

TREK-USER-0004

 20

NAK PDUs until all the data gaps are filled or
the number of NAK PDU's surpasses the
NAK limit. Providing a limit on the
maximum size of the NAK PDU ensures the

PDU will not be dropped because its size
exceeds the limits of its transport medium.
Minimum value is 50, maximum value is
64042 and the default value is 16000.

inactivity_timeout

The inactivity timeout is the length of time, in
seconds, the CFDP library is required to wait

between CFDP packet receptions prior to
cancelling the CFDP transaction. Minimum
value is 1, maximum value is 2,147,483,647
and the default value is 300 seconds.

NATIVE_CFDP

outgoing_file_chunk_size

The outgoing file chunk size is the maximum

size, in bytes, of the data zone of the CFDP
packets created by the CFDP library.
Minimum value is 1, maximum value is
65,200 and the default value is 1,300 bytes.

NATIVE_CFDP

aggregate_file_transfer_bit_rate

The aggregate file transfer rate represents the
maximum transmission rate, in bits per

second, of the CFDP packets created by the
CFDP library. Minimum value is 1, maximum
value is 2,147,483,647 and the default value is
10,000,000 bits/second.

NATIVE_CFDP

socket_queue_size

The UDP socket that is created to receive

CFDP packets may store CFDP packets in a
queue prior to the packets being processed by
the CFDP library. This queue minimizes the
chances of a CFDP packet being dropped due

to packet transmission bursts or a temporary
CPU spike on the receiving platform. In
general, a larger queue size is needed for
higher transmission rates. If an unacceptable

number of CFDP packet retransmissions is
occurring, increasing the queue size or
decreasing the file transfer rate may help
decrease or eliminate the CFDP packet

retransmissions. Minimum value is 0,
maximum value is 1,000,000 and the default
value is 1000.

NATIVE_CFDP

transaction_cycle_time_interval

The transaction cycle time interval, in
milliseconds, controls the processing rate of
CFDP library transactions. Minimizing the

cycle time, increases the transaction speed or
processing rate. The default value is 1

NATIVE_CFDP

TREK-USER-0004

 21

milliseconds. The minimum value is 0
millisecond and the maximum value is
2,147,483,647 milliseconds. This value
should only be incremented if CPU usage on

the host platform is unexpectedly high while
idling or while processing a transaction.

steps_per_transaction_cycle

The step per transaction cycle defines how
many steps or transaction cycles are
performed prior to delaying the prescribed
transaction cycle time. Increasing the steps

per transaction cycle, increases the transaction
speed or processing rate. The default value is
10. The minimum value is 1 and the
maximum value is 2,147,483,647. This value

should be incremented if the CFDP library is
not able to achieve the aggregate file transfer
rate. This value should be decremented if
CPU usage on the host platform is

unexpectedly high while idling or while
processing a transaction.

NATIVE_CFDP

class_of_service

The class of service defines the CFDP level of
service for the file transfer. The two CFDP
levels of service are class1 and class2. CFDP

class1 service is a "send and forget" level of
service that sends files without any
acknowledgement of their receipt by the
recipient. CFDP class2 service requires file

delivery acknowledgements in the form of
ACKs and NAKs from the recipient. The
default value is class2.

NATIVE_CFDP

auto_resize_nak_max_pdu_size

The auto_resize_nak_max_pdu_size boolean
enables the automatic detection of dropped
NAK PDUs and the resizing of the NAK

maximum PDU packet size. The auto resize
capability is advantageous when a CFDP
transaction experiences a very large number of
dropped packets or data gaps and the size of

the associated NAK PDU packet that is
identifying the gaps exceeds the capability of
the transport medium (i.e., the NAK PDU
packet is heavily fragmented and cannot

successfully reach its destination). Under
these conditions, CFDP's best option is to
reduce the size of NAK PDU by splitting it up
across multiple NAK PDUs. The CFDP auto

resize code attempts to determine an

NATIVE_CFDP

TREK-USER-0004

 22

acceptable value for the NAK maximum PDU
size given the limitations of the transport
medium and the understanding that the CFDP
library's best performance is achieved by

setting the NAK maximum PDU size to the
largest value supported by the transport
medium. If auto resize of the NAK maximum
PDU size has been enabled and a CFDP

transaction determines no NAK PDU packet
has been successfully transmitted to its
destination, the auto resize code automatically
halves the NAK maximum PDU size and

retransmits the PDU. The auto resize code
continues to halve the NAK maximum PDU
size and retransmit a smaller NAK PDU until
the NAK PDU reaches its destination or the

NAK maximum PDU size drops below 1280
bytes. Once a NAK PDU packet is
successfully transmitted to its destination, the
auto resize code is no longer exercised for that

transaction and subsequent dropped NAK
PDUs are not resized. Each new CFDP
transaction initiates a new instance of the auto
resize code. Therefore, the value for the

maximum NAK PDU size may be different
with different CFDP transactions. The auto
resize code initialize the maximum NAK PDU
size to the value provided by the

nak_max_pdu_size CFDP parameter. By
resetting the nak_max_pdu_size CFDP
parameter in the CDFP configuration file or
CFDP GUI to the value determined by the

auto resize code, the CFDP application may
avoid dropping NAK PDU packets that are too
large to be supported by the transport medium.
The default value is true.

auto_suspend_and_resume

The auto suspend and resume boolean enables
the automatic suspension or resumption of all

CFDP transactions associated with a remote
entity ID when a network connection to that
remote entity ID has been lost or found. The
TReK CFDP library creates a UPD socket that

sends and receives four byte packets to
confirm network connectivity. This capability
may be used to detect Acquisition Of Signal
(AOS) and Loss Of Signal (LOS) events

NATIVE_CFDP

TREK-USER-0004

 23

enabling native CFDP to successfully transfer
files across multiple AOS/LOS windows
without manual intervention. Auto suspend
and resume is only supported by the TReK

CFDP library. Therefore, the TReK CFDP
library software must be running on both the
local and remote nodes. The default value is
false.

auto_suspend_and_resume_mode

The auto suspend and resume mode identifies
the auto suspend and resume relationship

between the local node and the remote nodes.
The three auto suspend and resume mode
parameter values are
PEER_TO_PEER_MODE,

CLIENT_OR_GROUND_MODE and
SERVER_OR_FLIGHT_MODE. A peer to
peer configuration allows all peer to peer
nodes to perform CFDP transactions with each

other. A client server configuration restricts
CFDP transactions. A client may only
perform CFDP transactions with a server and
a server may only perform CFDP transactions

with a client. A client may perform CFDP
transactions with multiple server nodes and a
server may perform CFDP transactions with
multiple client nodes. The four byte

connectivity packet is always being
transmitted by all nodes in a peer to peer
configuration regardless of network
connectivity or AOS/LOS periods. In a

client/ground and server/flight configuration
the connectivity packet is always being
transmitted by the client/ground node but the
server/flight node only transmits the

connectivity packet over a confirmed network
connection during AOS periods. The default
value is PEER_TO_PEER_MODE.

NATIVE_CFDP

auto_suspend_and_resume_port

The auto suspend and resume port is used to
create the UDP socket that sends and receives

the four byte connectivity packet. The default
port value is 45600 (minimum value 0 and
maximum value 65535).

NATIVE_CFDP

auto_suspend_and_resume_connection_timeout

The auto suspend and resume connection
timeout value is the length of time, in seconds,
that must pass between the receipt of

connectivity packets before a connection

NATIVE_CFDP

TREK-USER-0004

 24

between two entity IDs or nodes is declared
lost. Connectivity packets are sent once every
half second. Minimum value is 1, maximum
value is 2,147,483,647 and the default value is

5.

local_entity_id local_ip_address local_port

The pre-assigned local entity ID integer value

and its associated local IP address and local
port. Only one local EID entry is supported by
the CFDP library. The default
local_ip_address value is 127.0.0.1. The

default local_port value is 4560 (minimum
value 0 and maximum value 65535).

NATIVE_CFDP

remote_entity_id remote_ip_address
remote_port

The pre-assigned remote entity ID integer
value and its associated remote IP address and
remote port. Multiple remote entity ID entries

are supported by the CFDP library.

NATIVE_CFDP

remote_entity_id remote_ip_address
remote_port

peer_pub_key_path_and_file_name

The pre-assigned remote entity ID integer

value and its associated remote IP address,
remote port and the absolute path and name of
the file containing the peer public key to
encrypt and decrypt the native CFDP PDU

packets. The peer public key is the public key
of the remote/destination platform and is
created by TReK's "trek_crypt" program. A
peer public key path and file name must be

provided to enable encryption and decryption
of all CFDP transactions with the remote
entity. Multiple remote entity ID entries are
supported by the CFDP library.

NATIVE_CFDP

lifespan

The lifespan is the bundle's "time to live"

(TTL) in seconds. The bundle is destroyed if
its TTL has expired and it has not reached its
destination. Minimum value is 1, maximum
value is 2,147,483,647 and the default value is

86400.

ION_CFDP

bp_class_of_service

The BP class of service defines the

transmission priority of outbound bundles
from three ION priority queues corresponding
to bulk, standard and expedited priorities. The
three BP class of service parameter values are

BULK_PRIORITY, STD_PRIORITY and
EXPEDITED_PRIORITY. The expedited
priority queue must be empty before bundles
in the standard or bulk queues are serviced by

ION. Therefore, bundles with
EXPEDITED_PRIORITY should only be sent

ION_CFDP

TREK-USER-0004

 25

in critical/emergency situations. The default
value is STD_PRIORITY.

expedited_priority_ordinal

The expedited priority ordinal is only
associated with the EXPEDITED_PRIORITY
class of service. Ordinal values range from 0
(lowest priority) to 254 (highest priority). The

default value is 0.

ION_CFDP

transmission_mode

The transmission mode defines the reliability
of bundle delivery to a destination. The three
transmission mode parameter values are
BEST_EFFORT, ASSURED and

ASSURED_WITH_CUSTODY_TRANSFER.
BEST_EFFORT relies upon the underlying
convergence-layer protocol (e.g.,
Transmission Control Protocol or TCP) to

retransmit missing bundles. ASSURED is a
step up in reliability and includes BP support
in detecting a lost TCP connection and re-
forwarding of bundles assumed aborted by the

convergence-layer protocol failure.
ASSURED_WITH_CUSTODY_TRANSFER
requires the reception, by the sending node, of
a custody acceptance or refusal signal

(packaged in a bundle) from the receiving
node. The default value is ASSURED.

ION_CFDP

criticality

A critical bundle is one that has to reach its
destination as soon as is physically possible.
For this reason, bundles flagged as critical
may not include custody transfer and require

an ION configuration with contact graph
routing. In some cases, a critical bundle may
be sent over multiple routes to ensure delivery
to its final destination. Critical bundles are

placed in the expedited priority queue and
should only be used in emergency situations.
The two criticality parameters are
NOT_CRITICAL and CRITICAL. The

default value is NOT_CRITICAL.

ION_CFDP

support_transaction_result_message

The support transaction result boolean enables
the generation and transmission of a CFDP
transaction result message to the source node.
If the source node receives the transaction

result message within a designated time
window, it will update its transaction status
with the transaction result (e.g., success or
fail). If the support transaction result boolean

ION_CFDP

TREK-USER-0004

 26

is set to "true" and the result message is not
received within a designated time window, the
source node's transaction status is set to
"unknown". If this boolean is set to "false"

and the source node did not experience any
problems while transmitting the CFDP
transaction request, the final transaction status
is set to "finished". This capability is only

supported by the TReK CFDP library.
Therefore, the TReK CFDP library software
must be running on both the source and
destination nodes. The default value is true.

transaction_result_message_timeout

The transaction result message timeout is the
length of time, in seconds, the TReK CFDP

library will wait for a transaction result
message prior to setting the final status of the
transaction to "unknown". Choosing the
proper transaction result message timeout is

problematic. ION CFDP processes CFDP
transactions sequentially so careful
considerations must be made when setting this
value. If a large number of files are being

uplinked and downlinked simultaneously, a
larger timeout value may be necessary. In
addition, the timeout value should include
LOS windows if the file transfer will span

LOS periods (the result message timer is not
paused during an LOS). Too small a value
will unnecessarily set the final status of a
transaction to "unknown", too large a value

will introduce an unnecessary wait prior to
setting the final status of the transaction to
"unknown" if a final status message is never
received. It is best to choose too large a value

versus too small a value. Minimum value is 1,
maximum value is 2,147,483,647 and the
default value is 300.

ION_CFDP

add_tmp_cfdp_filename_extension

The "tmp_cfdp" file name extension boolean
should be set to "true" if ION is transferring

one or more files to a TReK dropbox
directory. The most common scenario is if an
encryption dropbox has been created and
configured to place an encrypted file in an

ION CFDP dropbox. If the ION CFDP
dropbox is configured to transfer the
encrypted file to a decryption dropbox on the

ION_CFDP

TREK-USER-0004

 27

destination platform, the "tmp_cfdp" file name
extension boolean must be "true" on the
source or sending platform to properly decrypt
the file on the destination platform. If this

boolean is set to "true", a temporary file name
is created for all file transfers by adding a
".tmp_cfdp" file name extension to the
original file name on the destination platform.

Upon successful completion of the file
transfer, the ".tmp_cfdp" extension is removed
from the file name on the destination platform.
If the destination is a dropbox, the dropbox

will use the file name to determine both when
the file has completed its transfer and when
the file may safely be decrypted by the
dropbox. If this boolean is set to "false", no

temporary file name is used during the file
transfer and ION "put" transfers to a TReK
dropbox directory are not supported. Native
CFDP uses a temporary "tmp_cfdp" file name

for all file transfers and does not require this
boolean flag when transferring files to a
dropbox directory. Setting the "tmp_cfdp" file
name extension boolean to "true" even if a file

transfer destination is not a TReK dropbox
directory is supported and does not impact
performance. However, the destination
platform must be hosting TReK version 5.2.0

or higher to properly remove the ".tmp_cfdp"
file name extension. The default value is true.

display_console_menu

The display console menu boolean controls
displaying the console command primitive
menu during startup of the console
application. The default value is true.

NATIVE_CFDP
ION_CFDP

display_error_messages

The display error messages boolean controls

displaying error messages by the CFDP GUI
and console applications. If "true", error
messages are displayed by the CFDP GUI or
console applications. The default value is true.

NATIVE_CFDP
ION_CFDP

display_warning_messages

The display warning messages boolean
controls displaying warning messages by the

CFDP GUI and console applications. If "true",
warning messages are displayed by the CFDP
GUI and console applications. The default
value is false.

NATIVE_CFDP
ION_CFDP

display_info_messages The display info messages boolean controls NATIVE_CFDP

TREK-USER-0004

 28

displaying information messages by the CFDP
GUI and console applications. If "true",
information messages are displayed by the
CFDP GUI and console applications. The

default value is true.

ION_CFDP

display_progress_messages

The display progress messages boolean

controls displaying progress messages by the
CFDP GUI and console applications. If "true",
progress messages are displayed by the CFDP
GUI and console applications. The default

value is false.

NATIVE_CFDP
ION_CFDP

display_debug_messages

The display debug messages boolean controls
displaying debug messages by the CFDP GUI
and console applications. If "true", debug
messages are displayed by the CFDP GUI

applications. The default value is false.

NATIVE_CFDP

ION_CFDP

default_remote_entity_id

The default remote entity ID is used by the

CFDP GUI application to save a default value
for the remote EID. The default value is blank.

NATIVE_CFDP
ION_CFDP

default_destination_command_line

The default destination command line is used
by the CFDP GUI application to save a
selected default command line destination

path from the list of default destination paths.
The default value is blank.

NATIVE_CFDP
ION_CFDP

default_destination_command_list

The default destination command list is used
by the CFDP GUI application to save a
selected default command list destination path
from the list of default destination paths. The

default value is blank.

NATIVE_CFDP
ION_CFDP

default_destination_path

The default destination path is used by the
CFDP GUI application to save the list of
default destination paths. The default value is
blank.

NATIVE_CFDP
ION_CFDP

gui_command_line_primitive
Used by the CFDP GUI application to save
the command line primitive. The default value

is blank.

NATIVE_CFDP
ION_CFDP

Table 4 TReK CFDP Configuration File Parameters

5.2 How to Create a CFDP Dropbox

This section describes how to create a CFDP dropbox. The CFDP console application
may be configured to create a CFDP dropbox by including a “dropbox” primitive in the

TReK CFDP configuration file. One or more “dropbox” primitives may be added to the
“Dropbox CFDP Primitives” section of the configuration file. The “dropbox” primitive is
not supported by the CFDP console application’s command line interface.

TREK-USER-0004

 29

Acceptable formats of the CFDP "dropbox" primitive string for Native CFDP are as
follows:

 dropbox <class1/class2> <"dropbox path"> <dest EID> <"dest path"> <retry limit>

<"successful transaction path">
(e.g., dropbox class2 "D:/db_dest1/" 200 "D:/dest1/" 1 "D:/success/")

 dropbox <class1/class2> <”dropbox path"> <dest EID> <"dest path"> <retry limit>

<"">
(e.g., dropbox class2 "/home/user/dropbox_dest1" 200 "/home/user/dest1" 1 "")

The dropbox primitive for Native CFDP includes class 1 or class 2 service, the dropbox
path, the destination entity ID, the destination path, the retry limit and the successful
transaction path. The retry limit defines the number of additional attempts at transferring

a file before declaring the transaction unsuccessful. The successful transaction path is the
path to a directory, on the dropbox source platform, where successfully transferred files
are stored upon completion of a transaction. If the successful transaction path is empty,
as shown in the second example, the dropbox will delete the file, on the source platform,

if the file is successfully transferred to its destination. For class 1 service, files are
simply moved or deleted from the dropbox directory when the transaction has completed
the number of retry attempts.

Acceptable formats of the CFDP "dropbox" primitive string for ION CFDP are as
follows:

 dropbox <life>/<cos>/<ord>/<mode>/<crit> <"dropbox path"> <dest EID> <"dest

path"> <retry limit> <" successful transaction path ">
(e.g., dropbox 86400/STD_PRIORITY/0/ASSURED/NOT_CRITICAL
"/home/user/dropbox_dest1/" 200 "/home/user/dest1/" 0 "/home/user/success/")

 dropbox //// <"dropbox path"> <dest ID> <"dest path"> <retry limit> <"">
(e.g., dropbox ///ASSURED/ "/home/user/db_dest1/" 200 "/home/user/dest1/" 0 "")

 dropbox / <"dropbox path"> <dest EID> <"dest path"> <retry limit> <"">

(e.g., dropbox / "/home/user/dropbox_dest1" 100 "D:/dropbox_dest1" 0 "")

The CFDP dropbox primitive for ION CFDP is identical to Native CFDP except "class1"
or "class2" is replaced by the ION CFDP parameter values in the TReK CFDP

configuration file (TTL, priority, mode and criticality) if the values were not specified in
the primitive string. Another important distinction between ION and Native CFDP
dropboxes is associated with the retry limit. An ION CFDP dropbox ignores the retry
limit value in the dropbox primitive and resets the value to zero in the TReK CFDP

library. There are two important reasons why the ION CFDP dropbox does not attempt
to retransmit failed CFDP transactions:

TREK-USER-0004

 30

1. ION CFDP uses the original filename when populating the destination file. Any
attempt to retransmit a file must also include a "delete" filestore directive to ensure
no file with the original filename exists at the destination.

2. If transaction result messages are being processed and an incorrect
"transaction_result_message_timeout" is chosen, a successfully transferred file will
be incorrectly deleted.

If transaction result messages are not being processed by the TReK ION CFDP library
(i.e., class 1 service), files are simply moved or deleted from the dropbox directory when
the transaction has completed the transfer from the dropbox.

Dropbox files are renamed with a ".dropbox" extension while they are being processed by
the dropbox. If a dropbox fails to successfully transfer a file to the destination directory,
a class 2 Native CFDP dropbox will initiate additional transfer attempts up to the "retry
limit" designated in the dropbox primitive. A class 1 Native CFDP dropbox will blindly

repeat the file transfer up to the "retry limit". If the final status message of a file
transaction identifies an unsuccessful file transfer, the file is renamed with an
".unsuccessful" extension. If the CFDP library fails to receive the final status of a file
transaction, the file is renamed with an ".unknown" extension. If an error occurred

during the file transfer, the file is renamed with a ".droperror" extension. Only
successfully transferred files are moved or deleted from the dropbox directory.

5.3 How to Create an Encrypt or Decrypt Dropbox

This section describes how to create an encrypt or decrypt dropbox. The CFDP console

application may be configured to create an encrypt or decrypt dropbox by including a
dropbox primitive in the TReK CFDP configuration file. One or more dropbox
primitives may be added to the “Dropbox Encrypt or Decrypt Primitives” section of the
configuration file. The dropbox primitive is not supported by the CFDP console

application’s command line interface. A TReK CFDP configuration file dropbox
primitive defines an encrypt or decrypt dropbox's operation parameters including where
the dropbox is located and the local destination directory of each newly created encrypted
or decrypted file. Encrypt and decrypt dropboxes are created during initialization of the

TReK CFDP library when InitToolkitCfdp function reads the TReK CFDP configuration
file. An encrypt or decrypt dropbox file is encrypted or decrypted prior to being
transferred to a local destination directory on the dropbox platform. Pre-existing dropbox
files are immediately encrypted or decrypted after the creation of the dropbox. If the

local destination directory of an encrypt dropbox is a CFDP dropbox, the encrypted file
will automatically be transferred to the CFDP dropbox's remote destination directory. If
the CFDP dropbox's remote destination directory is a decrypt dropbox the encrypted file
will automatically be decrypted and placed in the decrypt dropbox's destination directory.

By chaining together encrypt and decrypt dropboxes with a CFDP dropbox, a completely
automated encrypt, CFDP file transfer, decrypt chain may be created and set in motion by
placing a file in the local encrypt dropbox. The encrypt, decrypt, CFDP dropbox chain is
currently the only method TReK provides to automate file encryption/decryption using

ION CFDP. Unlike ION CFDP, native CFDP provides access to the CFDP PDUs,

TREK-USER-0004

 31

making it possible to configure the TReK native CFDP application to encrypt and decrypt
all CFDP transactions (e.g., "put", "get", "message", "create_file", "delete_file" ...) and
avoid creating encrypt and decrypt dropboxes. Simply add a peer public key path and_file

name to the end of the remote entity line in the native section of the CFDP configuration
file. Review the description of the CFDP configuration file's remote entity IDs for further
information on this native CFDP encrypt/decrypt configuration option.

Acceptable formats of the encrypt or decrypt dropbox primitive string are as follows:

 dropbox <encrypt/decrypt> <"dropbox path"> <" peer public key path and

filename"> <"destination path"> <crypt block size> <"successful transaction path">

 (e.g., dropbox encrypt "D:/dropbox_dest1/" "D:/ peer_public.key" "D:/dest1/"
1000000 "D:/success/")

 dropbox <encrypt/decrypt> <"dropbox path"> <" peer public key path and

filename"> <"destination path"> <crypt block size> <"">
 (e.g., dropbox decrypt "/home/user/dropbox_dest1" "/home/user/ peer_public.key"
"/home/user/dest1" 1000000 "")

The encrypt/decrypt dropbox primitive includes the encrypt or decrypt service, the
dropbox path, the peer public key path and filename, the destination path, the crypt block
size and the successful transaction path. The encrypt or decrypt service identifies
whether the dropbox is encrypting or decrypting files. The dropbox path defines the

location of the encrypt or decrypt dropbox while the peer public key path and filename
define the location and name of the peer public key file. The peer public key is the public
key of the destination platform. The encrypt/decrypt dropbox primitive includes a
destination path to the local directory where the new encrypted or decrypted file is

created and stored. The crypt block size is an unsigned 32 bit value identifying the
number of bytes that are read and encrypted or decrypted with every file read. A large
crypt block size improves encryption and decryption performance but may also tax a
CPU. If the successful transaction path is defined, as shown in the first example, the

dropbox will move the original file placed in the dropbox to the successful transaction
directory if and only if a new encrypted or decrypted file is successfully created and
stored in the dropbox's destination directory. If the successful transaction path is empty,
as shown in the second example, the dropbox will delete the original file placed in the

dropbox if and only if a new encrypted/decrypted file is successfully created and stored in
the dropbox's destination directory. If the encrypt or decrypt dropbox fails to encrypt or
decrypt a file, the file will be renamed with a time tagged ".droperror" extension and
remain in the dropbox. The encrypt or decrypt dropbox will not attempt to encrypt or

decrypt a file with a ".droperror" extension in its filename. The TReK encryption
architecture uses OpenSSL's FIPS 140-2 validated cryptographic module.

5.4 How to Create a Frag or Defrag Dropbox

This section describes how to create a fragmentation or defragmentation dropbox. The

CFDP console application provides the ability to transfer very large, multi-Gigabyte, files

TREK-USER-0004

 32

by splitting the files apart using a fragmentation dropbox, transferring the file fragments,
using a CFDP dropbox, to a defragmentation dropbox where the file fragments are put
back together producing the original very large, multi-Gigabyte, file. A TReK CFDP

configuration file frag or defrag dropbox primitive defines a frag or defrag dropbox's
operation parameters including where the dropbox is located, the size of the file
fragments and the frag or defrags destination directory and successful transaction
directory. Frag and defrag dropboxes are created during initialization of the TReK CFDP

library when InitToolkitCfdp function reads the TReK CFDP configuration file. Pre-
existing dropbox files are immediately fragmented after the creation of the frag dropbox.
If the local destination directory of a frag dropbox is a CFDP dropbox, the file fragment
will automatically be transferred to the CFDP dropbox's remote destination directory. If

the CFDP dropbox's remote destination directory is a defrag dropbox, the fragmented file
will automatically be put back together and moved to the defrag dropbox's destination
directory when all the file fragments have been received by the defrag dropbox. By
chaining together frag and defrag dropboxes with a CFDP dropbox, a completely

automated file fragmentation, CFDP file transfer, file defragmentation chain may be
created and set in motion by placing a file in the local frag dropbox. In addition, encrypt
and decrypt dropboxes may be chained to the frag and defrag dropboxes producing an
automated sequence of file encryption, file fragmentaion, CFDP file transfer, file

defragmentation and file decryption. The fragmentation dropbox comes in two flavors:
"frag" or "frag_cfdp". A "frag" dropbox creates a series of file fragments and
immediately places the fragments in the dropbox's destination directory which may or
may not be a CFDP dropbox directory. If the "frag" dropbox destination directory is a

CFDP dropbox, the file fragments are downlinked simultaneously in a series of
independent CFDP transactions. A "frag_cfdp" dropbox creates a series of fragments but
only after the successful CFDP transfer of the previous file fragment to the remote
destination of CFDP dropbox. In other words, a "frag_cfdp" dropbox's destination

directory must be a CDFP dropbox directory and the "frag_cfdp" dropbox will only
create the next file fragment after the previous file fragment has been successfully
transferred by the CFDP dropbox. For this reason, a "frag_cfdp" dropbox's destination
directory must be CFDP dropbox directory. If multiple files are added to a "frag_cfdp"

dropbox simultaneously, the "frag_cfdp" dropbox will process the files one at a time,
fragmenting and transferring all the fragments from one file prior to fragmenting and
transferring all the fragments from the next file in the "frag_cfdp" dropbox. A
"frag_cfdp" dropbox will require more time to transfer a very large file but has the

advantage of an orderly and immediate cancellation of file fragmentation if there are
problems transferring a file fragment using CFDP.

Acceptable formats of the frag/defrag dropbox primitive string are as follows:

 dropbox <frag/frag_cfdp> <"dropbox path"> <“destination path"> <file

fragmentation size> <“successful transaction path">
 (e.g., dropbox frag "D:/dropbox_dest1/" "D:/dest1/" 100000000 "D:/success/")

TREK-USER-0004

 33

 dropbox <frag/frag_cfdp> <"dropbox path"> <“destination path"> <file
fragmentation size> <“successful transaction path">

 (e.g., dropbox frag_cfdp "D:/dropbox_dest1/" "D:/dest/" 100000000 "")

 dropbox <defrag> <"dropbox path"> <“destination path"> <“successful transaction

path">
 (e.g., dropbox defrag "D:/dest1" "D:/final_destnation" "")

The frag/frag_cfdp dropbox primitive includes the frag or frag_cfdp service, the dropbox
path, the destination path, the 32 bit file fragmentation size, in bytes, and the successful
transaction path. The defrag dropbox primitive includes the defrag service, the dropbox

path, the destination path and the successful transaction path. The frag, frag_cfdp or
defrag service identifies whether the dropbox is fragmenting or
defragmenting/reconstructing files. The frag or frag_cfdp dropbox breaks up a file into
fragments sized to match the desired file fragmentation size, in bytes, and creates a new

file fragment name by adding the current file fragment count and total fragment count to
the fragmented file's dropbox extension. The defrag dropbox parses the file fragment
name to identify the file's current and total fragment count prior to reconstructing the
original file.The frag and defrag dropbox primitives also include a destination path to the

local directory where the file fragments or reconstructed files are stored. If the successful
transaction path is defined, as shown in the first example, the dropbox will move the
original file or file fragments placed in the dropbox to the successful transaction directory
if and only if new file fragments or reconstructed files are successfully created and stored

in the dropbox's destination directory. If the successful transaction path is empty, as
shown in the second example, the dropbox will delete the original file or file fragments
placed in the dropbox if and only if new file fragments or reconstructed files are
successfully created and stored in the dropbox's destination directory. If the frag or

defrag dropbox fails to fragment or reconstruct the file, the file will be renamed with a
time tagged ".droperror" extension and remain in the dropbox. The frag or defrag
dropbox will not attempt to fragment or defragment/reconstruct a file with a ".droperror"
extension in its filename.

5.5 How to Turn on Message Logging

This section describes how to log messages to a file. Message Logging will only capture
messages generated after Message Logging is turned on. Any messages generated before
message logging was turned on will not appear in the log.

1. Launch the CFDP console application and enter the log command primitive as
follows: log <”pathname”> < log debug messages (true or false)>

2. The log command primitive includes:
a. A pathname with the path to the directory of the log file as well as the name

for the log file.
b. A true or false Boolean identifying whether debug messages are written to the

log file.

Alternatively, the CFDP console application may be configured to log messages using the

TREK-USER-0004

 34

log parameters found in the TReK CFDP configuration file. These parameters include:

1. log_messages_in_file

2. log_debug_messages
3. log_file_path
4. log_file_name

Defintions for each of these TReK CFDP configuration file parameters may be found in
section 5.1 Table 4.

5.6 How to Turn on Statistics Logging

This section describes how to record a snapshot of device and packet statistics to a user

specified file. The snapshot of device and packet statistics is updated once a second with
current statistics information at both the device and packet level. Device statistics
provides information on all packets that are being received or sent by the device. Packet
statistics provides information on the individual packet groups that are being received or

sent by the device. The TReK CFDP library does not divide packets into groups so packet
statistics mirror device statistics.

1. Launch the CFDP console application and enter the statistics command primitive as

follows: stat <”pathname”>
2. The statistics command primitive includes:

a. A pathname with the path to the directory of the statistics file as well as the
name for the statistics file.

Alternatively, the CFDP console application may be configured to record a snapshot of
statistics using the record statistics parameters found in the TReK CFDP configuration
file. These parameters include:

1. record_stat_snapshot_in_file
2. record_packet_statistics
3. record_stat_file_path

4. record_stat_file_name

Definitions for each of these TReK CFDP configuration file parameters may be found in
section 5.1 Table 4.

Table 5 identifies and describes the device statistics parameters. Note, ION CFDP relies
upon the bundle protocol to assure delivery of file segments therefore, device and packet
statistics are not relevant.

Device Statistics Parameter Description

Device Key
A character string that uniquely

identifies each device.

IP Address The IP address of the device if it is a

TREK-USER-0004

 35

socket.

Port (C/L/S)

The port number of the device if it is

a socket. If the socket is a client
socket then the port number will be
followed by two ‘/’. If the client
socket is connected to a listener

socket, the listener’s port number is
also listed. If the socket is a server
socket then the client port number
that is connected to the server is

listed first, followed by two ‘/’ and
the server’s listener port number. If
the socket is a listener socket the
listener’s port number is listed

between two ‘/’.

Protocol
The IP transportation protocol,
either TCP or UDP, if the device is a
socket.

Segments Rcvd
The number of segments received by
the device if the device is a TCP
socket.

Pkts Rcvd
The total number of packets

received by the device.

Pkts Sent
The total number of packets sent by

the device.

Pkt Rcv Rate
The number of packets received by
the device in the last second.

Max Pkt Rcv Rate
The maximum packet receive rate
experienced by the device.

Kbit Rcv Rate
The number of kilobits received by

the device in the last second.

Max Kbit Rcv Rate
The maximum kilobit receive rate

experienced by the device.

Pkt Send Rate
The number of packets sent by the
device in the last second.

Max Pkt Send Rate
The maximum packet send rate
experienced by the device.

Kbit Send Rate
The number of kilobits sent by the
device in the last second.

Max Kbit Send Rate
The maximum kilobit send rate
experienced by the device.

Pkts Dropped

The total number of packets that
were dropped because they could

not be temporarily stored in a queue
or buffer. The most likely cause of
dropped packets is packets arriving

TREK-USER-0004

 36

at very high packet rates and/or a
queue size that is too small.

Table 5 Device Statistics

Table 6 identifies and describes the packet statistics parameters for a device.

Packet Statistics Parameter Description

Packet Key
A character string that uniquely
identifies each packet type.

Pkts Rcvd
The total number of packets that are
received and identified as this packet

type.

Pkts Sent

The total number of packets that are

sent and identified as this packet
type.

Pkt Rcv Rate
The number of packets received and
identified as this packet type in the
last second.

Max Pkt Rcv Rate
The maximum packet receive rate
experienced by this packet type.

Kbit Rcv Rate

The number of kilobits received and

identified as this packet type in the
last second.

Max Kbit Rcv Rate
The maximum kilobit receive rate
experienced by this packet type.

Pkt Send Rate
The number of packets of this
packet type sent in the last second.

Max Pkt Send Rate
The maximum packet send rate
experienced by this packet type.

Kbit Send Rate
The number of kilobits of this
packet type sent in the last second.

Max Kbit Send Rate
The maximum kilobit send rate
experienced by this packet type.

Pkts Dropped

The total number of packets, of this

type, that were dropped because
they could not be processed by
another device. The most likely
cause of dropped packets is packets

arriving at very high packet rates.

Pkt Seq Errors

The total number of packet sequence

errors identified for this packet type.
For example, the primary header of
the CCSDS packet contains a 14-bit
number that is used as a sequence

count. For each packet that arrives,

TREK-USER-0004

 37

the sequence count is compared to
the sequence count of the previous
packet. If the count is not the next in
the sequence, the packet sequence

error value is incremented.

Max Pkt Seq Error

The maximum packet sequence

error experienced by this packet
type.

Table 6 Packet Statistics

5.7 How to Turn on Metrics Logging

This section describes how to record a snapshot of CFDP metrics to a user specified file.

The snapshot of CFDP metrics is updated once a second with the completion status of
each CFDP transaction. The CFDP metrics are divided into sending and receiving
categories and grouped by file size ranging from less than a one megabyte to over a
gigabyte. The metrics include calculations on the number and percent of files sent or

received, the minimum, maximum, and average file transfer time and the number and
percent of files that required packet retransmission.

1. Launch the CFDP console application and enter the metrics command primitive as

follows: metric <”pathname”>
2. The metrics command primitive includes:

a. A pathname with the path to the directory of the metrics file as well as the
name for the metrics file.

Alternatively, the CFDP console application may be configured to record a snapshot of
metrics using the record metrics parameters found in the TReK CFDP configuration file.
These parameters include:

1. record_cfdp_metrics_snapshot_in_file
2. record_cfdp_metrics_file_path
3. record_cfdp_metrics_file_name

Definitions for each of these TReK CFDP configuration file parameters may be found in
section 5.1 Table 4.

Table 7 identifies and describes the CFDP metrics parameters. Note, ION CFDP relies
upon the bundle protocol to assure delivery of file segments therefore, NAK metrics are
not relevant.

CFDP Metrics Parameter Description

File Size (MB)
The minimum and maximum file
size, in megabytes, for the group.

Success Count
The number of successful file
transfers for the group.

TREK-USER-0004

 38

Success %
The percentage of successful file
transfers for the group.

Cancel Count
The number of canceled file
transfers for the group.

Abandon Count
The number of abandoned file

transfers for the group.

Fail Count
The number of failed file transfers

for the group.

Unknown Count
The number of unknown file
transfers for the group.

Min Trans Time (sec)
The minimum successful file
transfer time in seconds.

Max Trans Time (sec)
The maximum successful file
transfer time in seconds.

Avg Trans Time (sec)
The average successful file transfer
time in seconds.

Success W/ NAK Cnt
The number of successful file
transfers that required one or more

NAK packets.

Success W/ NAK %

The percentage of successful file

transfers that required one or more
NAK packets.

Min NAK CNT/Trans

The minimum number of NAK
packets that had to be transferred for
a successful file transfer requiring

NAK packets.

Max NAK Cnt/Trans

The maximum number of NAK

packets that had to be transferred for
a successful file transfer requiring
NAK packets.

Avg NAK Cnt/Trans

The average number of NAK
packets that had to be transferred for

a successful file transfer requiring
NAK packets.

Table 7 CFDP Metrics

6 Details

This section covers various application details.

6.1 Configuration

The CFDP console application may be configured to hide or not display all console

application messages by setting the “display” parameters to false. This configuration
might be preferable if running as a flight application.

TREK-USER-0004

 39

The GUI and default parameters referenced in the configuration file are applicable to the
TReK CFDP GUI application and are ignored by the TReK CFDP console application.

The configuration file “support_cfdp_status_requests” parameter should be set to “false”
to disable actively monitoring transactions with the TReK CFDP library’s transaction
monitoring functions. The TReK CFDP console application does not actively monitor
transactions but example code that actively monitors transactions may be found in the

TReK CFDP library examples.

The console application may initialize its list of primitives by adding them to the
configuration file. Alternatively, the primitive lists may be initialized using the “process”

command primitive in the console application.

6.2 Transaction

The CFDP console application uses the TReK CFDP library and TReK Device Service
library to provide CFDP functionality. The CFDP console application’s ION CFDP

mode may be configured to send a final transaction result message (e.g., success or fail)
to the source by setting the “support_transaction_result_message” flag in the console

application’s configuration file (see section 5.1 Table 4). Detailed information about CFDP
transactions may be found in the TReK CFDP library’s on-line help documentation.

6.3 Messages and Message Logging

The CFDP console application generates a variety of messages throughout the file
transfer activity. The messages are categorized by their message severity. Message
categories include error messages, warning messages, information messages, progress

messages and debug messages. Progress messages provide transaction status information
including the size of the file, bytes transferred, percentage complete and transaction state
(e.g., sending, receiving, suspend, resume…). Information messages include information
on the start of a transaction as well the success or failure of the transaction. The console

application may display error, warning, information, progress and debug messages. The
display of these messages is controlled by the “display” parameters in the configuration
file. The console application may also be configured to log messages. Message logging
is controlled by the “log” command primitive or parameters in the configuration file.

Logging may be configured to include or exclude debug messages. When logging is
turned off using the “stop log” command primitive, the log file name is appended with a
time tag to produce a unique log file name.

7 FAQ and Troubleshooting

This section addresses Frequently Asked Questions and provides tips for troubleshooting
common gotchas.

TREK-USER-0004

 40

7.1 Is There an Easy Way to Transfer the Contents of a Directory?

Yes. To transfer the contents of a directory, enter the absolute path to the directory. The
CFDP application will transfer all the files in the first level of the directory.
Subdirectories will not be transferred. Be sure to include a forward slash ‘/’ at the end of

the directory path when entering the absolute path into the Source and Destination fields.

7.2 What is class1 and class2?

Class1 and class2 are transmission properties used with Native CFDP. Note: Special
thanks to NASA/GSFC for the following user friendly definitions:

“CFDP provides three Service Classes. Service Class 1 simply sends each file; there are
no replies from the receiver, nor is there any guarantee of reliable delivery. Service
Class 2 ensures reliable file delivery; any required retransmissions are requested and

performed by CFDP. Service Class 3 provides Proxy Operations (e.g. Entity ‘A’ tells
Entity ‘B’ to make a request of Entity ‘C’).”

The TReK CFDP application supports Class 1 and Class 2 when configured for Native

CFDP. When typing in one of these choices please use class1 and class2.

7.3 What is “////”?

“////” is a value used to designate the default set of transmission properties defined in the
Configure dialog for ION CFDP. “/” can also be used. When configured for ION

CFDP, transmission properties are specified using the Configure dialog and will apply to
all CFDP transactions. For more information about transmission properties please
reference section 5.1 Table 4.

7.4 Source and Destination Constraints

Source and Destinations must be identified using an absolute path. The absolute path
name consists of the full path and the file name. The absolute path must meet the
following criteria:

 The ION CFDP library works with a source absolute path limited to 255 bytes and a
destination absolute path limited to 246 bytes.

 The Native CFDP library works with primitive strings. The “put” primitive string

format is as follows:

put –class2 “source absolute path” eid “destination absolute path”

All Native CFDP library primitives are limited to 255 bytes.

The file size must meet the following criteria:

TREK-USER-0004

 41

 The size of the file to be transferred must be greater than 0 Bytes.
 The size of the file to be transferred cannot exceed 4.2 Giga Bytes for Native CFDP.
 The size of the file to be transferred cannot exceed 2.1 Giga Bytes for ION CFDP

when transferring from a device hosting the Windows Operating System (OS) to a
device hosting the Windows OS.

 The size of the file to be transferred cannot exceed 2.1 Giga Bytes for ION CFDP
when transferring from a device hosting the Windows OS to a device hosting the

Linux OS.

Consider using the fragmentation and defragmentation dropboxes when transferring files
that exceed CFDP’s file size limitations.

7.5 My File Starts to Transfer and Then Stops

Chances are the remote entity is unavailable or is not configured as you expected. Check
both the Local and Remote entity configurations and ensure the EIDs are correct, the IP
address and port information is correct, and both entities are up and running.

7.6 Transfer Results When Item Exists at Destination

Transfer results when an item exists at a destination differ based on configuration.

When configured for Native CFDP
If you attempt to “put” an item to a destination and the item already exists at the

destination, you will see a “cancelled (Filestore rejection)” error message and the existing
item will not be overwritten.

When configured for ION CFDP

If you attempt to “put” an item to a destination and the item already exists at the
destination, you will see a “failed” error message and the existing item will not be
overwritten.

7.7 Important Things to Know When Using the Get Primitive

The TReK CFDP software provides the capability to "get" or retrieve one or more files
from a remote destination. It is important to note that the CFDP Blue Book describes
implementation of a "get" as a proxy "put". TReK Native CFDP implements the CFDP
Blue Book defined proxy "put" function using proxy request and response messages.

TReK ION CFDP does not implement proxy "put" function using proxy request and
response messages. In addition, the “get” directive is not supported in all ISS CFDP
Native and ION implementations. Therefore, the "get" request will only succeed if both
sides of the file delivery transaction are using TReK software. The TReK ION CFDP

“get” function initiates the file transfer process by delivering an equivalent "put"
primitive character string to the remote platform's CFDP software using a “get” request
message. In addition, a “get” response message is generated providing transaction status
information to the initiator. There is an error scenario in which the initiator of the ION

CFDP “get” receives no feedback. If an ION CFDP “get” request message or “get”

TREK-USER-0004

 42

response message never reaches its target platform, the initiator will receive no status
describing the result of the “get” request.
.

7.8 How Does Suspend Transactions Work?

When configured for Native CFDP
CFDP suspending transactions by suspending both data transmission and timeout clocks
associated with the local platform’s file transfer transactions. The remote platform is not
notified of the suspension of file transfer transactions on the local platform and may

exceed its timeout limits if the local platform does not resume its file transfer transactions
for an extended period of time. If the local file transfer suspension is for an extended
period of time, the remote platforms should receive a separate suspend transaction
command to avoid exceeding its timeout limits. Both platforms may resume file transfer

transactions when they receive separate resume file transfer transaction commands.

When configured for ION CFDP
The ION CFDP application completes its file transfer responsibilities when it hands off to

ION’s BP application. The handoff may be relatively quick depending on the size of the
file. The suspend transaction request will not suspend a file’s transfer after the ION
CFDP application hands off a transaction to ION’s BP application. The suspend
transaction request does not affect ION CFDP file reception. The lifespan of the packet

bundles must also be considered when suspending for an extended period of time.

7.9 CFDP Transactions in an AOS/LOS Environment

Maintaining CFDP transactions across extended LOS periods is problematic. ION CFDP
solves this issue by relying on DTN's store and forward infrastructure. A contact plan

that predicts AOS/LOS periods may be used to support ION CFDP transactions between
a flight node and a ground node if the two nodes are communicating directly with each
other. If the ION CFDP transaction communication path includes the Huntsville
Operations Support Center (HOSC) DTN2 node, the DTN2 node will store and forward

the ION CFDP transaction during AOS/LOS periods. Native CFDP is not supported by
an underlying store and forward DTN infrastructure. A user must configure timeouts or
manually suspend and resume CFDP at both ends of a transaction to maintain the
transaction across a LOS period. The TReK CFDP library solves this native CFDP issue

by providing an automatic suspend and resume capability during LOS and AOS periods.
When the TReK CFDP library senses a LOS event, it automatically suspends all CFDP
transactions. When the TReK CFDP library senses an AOS event, it automatically
resumes all CFDP transactions. TReK identifies AOS and LOS events by sending and

receiving a four byte connectivity packet over a predefined UDP socket. TReK's
automatic suspend and resume design maintains native CFDP transactions across
multiple LOS periods without adjusting timeout values or requiring user intervention. If
new CFDP transactions are requested during a LOS period, the pending transaction

requests are placed in a queue and are submitted to the TReK CFDP library at the
beginning of the next AOS period. The automatic suspend and resume parameters in the
TReK CFDP configuration file configure and control TReK's automatic suspend and

TREK-USER-0004

 43

resume feature. For more information about automatic suspend and resume parameters
please reference section 5.1 Table 4.

7.10 How Do I Include My Crypt User Passphrase in the CFDP Console App?

If you created a public/private key pair using the “trek_crypt” application and included a
user passphrase, you must include the user passphrase in the command line that launches
the CFDP console application or you must modify the CFDP console application source
code and rebuild the application.

To launch the CFDP console application with a user passphrase, include the passphrase,
in double quotes, after the configuration file path and filename as follows:

 trek_cfdp_console.exe “D:/toolkit_cfdp_config.txt” “passphrase”
or
 ./start_trek_cfdp_console.sh “/home/username/toolkit_cfdp_config.txt” “passphrase”

To modify the CFDP console application source code to use a passphrase to
unwrap/decrypt the private key, change “InitToolkitCfdpAndCryptPassphrase” in main()
to include your passphrase as the second argument in the function call. The TReK CFDP
console source code is located in the install directory on Windows under

/example/trek_toolkit_cfdp_api/trek_cfdp_console/. On Linux the source code is located
in the install directory under /example/ trek-deviceservices
/trek_toolkit_cfdp_api/trek_cfdp_console/. You will have to recompile the CFDP
console application after making the change. You may use the Windows

trek_cfdp_console.vcxproj file or Linux makefile that is included with the source code
when recompiling the TReK CFDP console application. Finally, you will need to rename
the original trek_cfdp_console.exe (always keep a copy of the original executable)
located in TReK’s bin directory prior to moving the new trek_cfdp_console.exe to

TReK’s bin directory.

